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A B S T R A C T

The relationship between snowmelt and spring streamflow is changing under warming temperatures and
diminishing snowpack. At the same time, the hydrologic connectivity across catchment landscape elements,
such as snowpack and surface wetlands, can play a critical role in controlling the routing of snowmelt to
streams. The role of hydrologic connectivity is important in headwater regions of the continental northern
latitudes, where catchments have low topographic relief and seasonally frozen ground. Nevertheless, the
effects of soil frost on the sequence, timing, and magnitudes of hydrologic events that drive the movement of
water from a snowpack to a stream are not fully understood. Therefore, we examine two questions: First,
what is the flowpath that snow melt and precipitation from spring rain events takes to generate spring
streamflow, and second, what hydrologic, climatic, or landscape variables exert the most control on the
magnitude of streamflow? Here, we use long-term hydrological records from the two reference basins at the
Marcell Experimental Forest in northern Minnesota to analyze the cascading effects across precipitation, snow,
water table elevation, soil frost, and streamflow in peatland-dominated headwater catchments. We identify a
sequence of fill-and-spill effects across the landscape that control the timing of spring streamflow generation.
Then, we use stepwise regression to show that soil frost is a key supporting predictor for both the magnitude
of streamflow in the spring as it adds significantly to the predictive power of precipitation and water table
elevation. Our results highlight the importance of recognizing the role of soil frost, when present, on the
partitioning of snowmelt between overland runoff and water table recharge during the critical snowmelt period,
as well as the later partitioning between evapotranspiration and subsurface flows.
1. Introduction

In snow-dominated, seasonally-frozen catchments, spring stream-
flow timing and magnitude have been affected by a warming winter
climate. For instance, estimates have shown that, over the last century,
spring streamflow peaks have shifted earlier by 4.5 to 8.6 days in the
northern hemisphere (Hodgkins and Dudley, 2006) and 8.7 to 14.3 days
in the north-central United States (Ryberg et al., 2016). These shifts
in streamflow responses partially result from decreases in snow pack
size (Ford et al., 2020), including shifts in precipitation from snow to
rain. Decreasing snowfall fraction, or the portion of precipitation falling
in the form of snow, within a single catchment has been shown to
lead to earlier spring streamflow peaks (Barnett et al., 2005), as well
as decreases in mean annual streamflow (Berghuijs et al., 2014; Foster
et al., 2016).

However, the influence of snow fraction on streamflow can be com-
plicated by the direct effects of warming air temperature on the rate of
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snowmelt. Faster snowmelt rates, which can occur when spring warm-
ing arrives earlier, have been shown to lead to larger spring streamflow
peaks and increased runoff and flood risk (Trujillo and Molotch, 2014).
At the same time, warming temperatures can also increase surface
energy and evapotranspiration later in the spring, which can have a
counteracting effect that decreases streamflow (Badger et al., 2021).
Even so, the relative importance of snow fraction versus temperature-
driven land surface evaporative loss on streamflow remains unclear,
with studies showing that either could serve as a dominant driver of
streamflow in different future climate scenarios (Foster et al., 2016).
Therefore, the complex interactions among climate, snow, and hydro-
logical processes as the spring progresses remains an open research
question.

The climatic effects on streamflow are mediated by the hydro-
logic connectivity on the landscape, which is controlled by a range of
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surface and subsurface storage components that accelerate or inhibit
the flow pathways connecting water as precipitation inputs to stream-
flow (Pringle, 2003). For instance, snow–water equivalent (SWE), the
total amount of water stored in a snowpack, represents a temporary
storage of precipitation in a frozen state on the land surface, until
it is released during the spring as snowmelt. This storage behavior
temporarily ‘‘halts’’ the flow of water until it becomes available in
liquid form again Musselman et al. (2021). As such, the timing of
snow disappearance and the duration of snowmelt period exhibit strong
influence on snowmelt runoff, streamflow peaks, and overall water
availability in the spring. The relationships between snowmelt and
streamflow are commonly studied in sites monitored using the SNOTEL
network in the western United States (Leuthold et al., 2021; Heldmyer
et al., 2021; Trujillo and Molotch, 2014), where, due to the well-defined
surface topography and bedrock geology in mountainous regions, the
flow path from snowmelt to streamflow is fairly direct (Schneider and
Molotch, 2016). Surface wetlands represents another storage for precip-
itation. Surface wetlands may occur in areas of low topographic relief,
and water within wetlands is stored until the water table elevation
(WTE) increases over a threshold elevation, causing overland flow or
lateral flow out of the wetland. The WTE to streamflow relationship is
often the focus in studies on geographically isolated wetlands, which
demonstrate clear connectivity among precipitation, WTE, and surface
runoff (Cohen et al., 2016; Golden et al., 2016; Verry et al., 2011).
In geographically isolated wetlands, the WTE is the most important
predictor of landscape connectivity because it determines the level
of isolation between the wetland and its surrounding surface water
bodies (Winter and LaBaugh, 2003). As the height of the water table
rises above the wetland surface levels, the excess water flows over the
landscape to a surrounding stream, demonstrating the ‘fill-and-spill’
flow dynamics characteristic of hydrologic storage mechanisms (Cohen
et al., 2016; Winter and LaBaugh, 2003; McDonnell et al., 2021;
Leibowitz and Vining, 2003).

Despite the importance of snowpack and wetlands in determining
the connectivity to and therefore timing and magnitude of stream-
flow, these near-surface storage components have rarely been studied
together, especially in conjunction with another important landscape
driver: soil frost. In areas of seasonally frozen ground, air temper-
ature, snow, and soil moisture content control frost depths, which
influence the snowmelt partitioning between overland flow and subsur-
face recharge (Aygün et al., 2019; Verry et al., 2011). Frozen ground
restricts the infiltration of snowmelt and water table recharge, thereby
increasing surface runoff (Zhao and Gray, 1999; Kane and Stein, 1983).
The combined effects of rising winter temperatures and shrinking snow-
pack will also reduce the frost layer, resulting in an overall increase in
the rate of groundwater recharge due to earlier snow melt and higher
infiltration rates (Jyrkama and Sykes, 2007). The importance of frost is
dependent on a diverse range of factors, some of which are difficult
to predict or remain uncertain; while frost is more likely to affect
streamflow in small catchments, cold climates and forested land cover
can limit the effects frost has on streamflow (Ala-Aho et al., 2021). For
example, a soil frost model developed using data from a catchment in
northern Sweden showed no clear effect of soil frost on either the tim-
ing or magnitude of streamflow runoff. This lack of connection between
frost and streamflow was likely due to limited frost occurrence (frost
formed in only slightly more than half the years) or because the frost
often had thawed before spring melt and streamflow onset (Lindström
et al., 2002). In contrast, at a site in southern Switzerland, only 25%–
35% of the melt water infiltrated into the soil in a winter with thin
snowpack and thick frost layer, compared to 90%–100% in a different
winter that had a deep snowpack and thin frost layer (Bayard et al.,
2005).

As the effect of frost is variable across catchments and its presence
can greatly affect spring runoff, it is important to consider that, first,
soil frost can be quite heterogeneous across the landscape, a variability
2

that is not captured in soil profile studies (Zhao and Gray, 1999;
Kane and Stein, 1983). Second, soil frost varies from year to year,
depending on winter climate and precipitation. Capturing these spatial
and temporal variations is key to better understanding the relationship
between soil frost and streamflow generation. In this study, we use
long-term climatological and hydrological data to show a clear cascade
of hydrological connectivity throughout the landscape and to determine
the relative strengths of climatic and land surface variable in predicting
annual streamflow trends.

Peatlands provide an ideal environment in which to study interact-
ing surface and subsurface flows in the spring snowmelt season. The
majority of peatlands are located in northern latitudes, where seasonal
soil frost is becoming more dynamic under climate change, as soils
transition from permanently frozen to seasonally frozen soils (Bridgham
et al., 2013). Additionally, wetlands, including peatlands, are the sin-
gle largest natural source of methane, contributing about a third of
total global emissions (Gorham, 1991), with methane emissions from
peatlands strongly controlled by seasonal water table dynamics and
snowmelt dynamics (Feng et al., 2020). Therefore, it is critical to
understand how the increasingly dynamic frost conditions will impact
wetland water table, and by consequence, the role that peatlands play
in both global and regional methane budgets. Regionally, headwater
streams and wetlands provide innumerable ecosystem services, includ-
ing regulating streamflow responses and improving downstream water
quality (Colvin et al., 2019; Alexander et al., 2007). This critical hydro-
logical landscape provides the ideal location to examine the effects of
shifting spring hydrologic cascades on the wider network of low-relief
catchments.

We focus on relationships among climate, hydrology, and landscape
elements by examining two questions related to hydrologic connectivity
in snow-dominated, low-relief peatland catchments: how do snow,
frost, and surface wetlands mediate the flow paths from precipitation
to spring streamflow? And what hydrologic, climatic, or landscape
variables most control the magnitude of streamflow? As the effect of
frost is variable across catchments and its presence can greatly affect
spring runoff, it is important to consider that, first, soil frost can be
quite heterogeneous across the landscape, a variability that is not
captured in soil profile studies (Zhao and Gray, 1999; Kane and Stein,
1983). Second, soil frost varies from year to year, depending on winter
climate and precipitation. In this study, we will examine these questions
in two peatland catchments at the Marcell Experimental Forest (MEF)
in northern Minnesota (USA), using statistical approaches applied to
the analysis of long-term datasets. By focusing on two watersheds
with long data records, we contribute new findings to both unresolved
complexities of the importance of soil frost in forested catchments and
expand upon existing soil profile, event-scale, and modeling soil frost
studies. We first parameterize the processes that occur in the spring
season by extracting key hydrological events from the long-term time
series and analyze the timing across each of these events through
ranking. Then, we use stepwise regression to identify the importance
of winter and spring season variables for predicting annual streamflow.
Together, answers to these questions will illustrate the importance of
considering soil frost in headwater catchments.

2. Methodology

2.1. Site description

Our catchments are located within the USDA Forest Service Marcell
Experimental Forest (MEF, Lat. 47:31:52 N, Long. 93:28:07 W) near
Grand Rapids, Minnesota (USA). The MEF sits on the climatic transition
region between areas of seasonally frozen ground and northern boreal
regions, and has six peatland dominated catchments that have been
under long term observation since 1961 (Sebestyen et al., 2011).
The S2 and S5 research catchments are reference basins with central
peatlands surrounded by upland forests on mineral soils. Records for

these sites include hydrologic, meteorological, and water chemistry
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data (Sebestyen et al., 2021b). Minnesota climate is strongly continen-
tal with warm, humid summers and cold, dry winters. From 1961 to
2019, mean annual temperature at the catchments was 3.5 ◦C (Sebestyen
et al., 2021b). Average annual temperature has been increasing by
0.4 ◦C per decade since 1961 with the majority of the warming
occurring over the winter months (Sebestyen et al., 2011, January
to March, 0.7 ◦C per decade). Annual precipitation averages 79 cm,
with one third of precipitation falling in the form of snow (Sebestyen
et al., 2021b). Snow cover in the peatland starts in late October and
November and usually lasts until March or April of the following
year. There has been no change over time in maximum snow–water
equivalent under coniferous and open areas but significant decline
under deciduous covers (Sebestyen et al., 2011).

2.1.1. South unit — S2 bog
The S2 watershed has a total size of 9.7 ha which is made up

of a 3.2 ha domed peatland encircled by upland forests. The up-
land vegetation is dominated by aspen (Populus tremuloides, Populus
grandidentata) stands. The peatland is covered by black spruce Picea
mariana and Sphagnum mosses. The bog topography is characterized
by a slightly domed peat surface rising 18 cm at its peak with a
presumed parallel peatland water table (Richardson et al., 2010). There
is a streamflow outlet elevation of 420 m above sea level. Measure-
ments of the peatland WTE are taken near the highest elevation of
the bog using a stripchart recorder and daily maximum water table
is recorded (Sebestyen et al., 2011). Streamstage is measured using
a V-notch weir and strip chart recorder at the South-west end of the
catchment (Verry et al., 2018, for data and metadata). Winter snow
and frost depth were measured biweekly from 1962 to 2021 starting in
February and continuing through snow disappearance (Sebestyen et al.,
2021a, for data and metadata). In S2 snow and frost measurements
were taken biweekly on two upland snow courses in aspen stands and
one bog snow course in a black spruce stand.

2.1.2. North unit — S5 bog
S5 is a larger peatland on the North Unit of the Marcell Experi-

mental Forest that is 52.6 ha in size and contains five small satellite
peatlands that drain into a central peatland that is 6.1 ha. The S5
uplands are have some older growth and more diverse with species
of aspen, white cedar (Thuja occidentalis), white spruce (Picea glauca),
balsam fir (Abies balsamea), pine (Pinus strobus, Pinus resinosa, Pinus
banksiana), and mixed hardwoods with an average stand age of 100
years. Bog water table elevations are measured in a similar way as
in S2 using stripchart recorders to monitor a central peatland well.
Streamstage is measured using a V-notch weir at the Northeast corner of
the watershed. Similar to the S2 watershed, snow depth, SWE, and frost
depth measurements are taken biweekly in S5 beginning in February
and continue through snow disappearance. There are four snow courses
in S5, one in an upland clearing with the S5 meteorological station, one
in the bog, and two in the uplands (Sebestyen et al., 2011, 2021b).

2.1.3. Forestry sciences laboratory, grand rapids, MN
To increase the temporal resolution and coverage of the snow course

data from the MEF, we used supplemental data with a longer record
from the USDA Forest Service Grand Rapids Forestry Sciences Labo-
ratory (Lat. 47:14:9.2 N, Long. 93:31:41.9 W), approximately 48 km
south of the MEF. Here precipitation, snow inputs, and snow depth are
all taken daily from 1915 (precipitation) and 1948 (snow inputs, depth)
onwards. A correlation between precipitation inputs at the two sites is
shown in Fig. S1. In Grand Rapids the mean annual temperature from
1950 to 2020 was 4.5 ◦C and precipitation was 71 cm. Snow depth data
from 1974–1989 were missing most of the daily values and so these
3

years were removed from the analysis. i
Fig. 1. Daily water table elevation in the S2 bog. Annual water table time series
colored by year from 1995 (light green) to 2020 (dark blue). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

2.2. Characterizing the timing and magnitude of hydrological events

We first identified hydrological events in the winter and spring
periods and derived metrics characterizing two key aspects of these
events: magnitude and timing in the water year (defined here as
October 1st to September 30th). These standardized metrics can be used
to compare hydrological events across multiple years (1995–2020) and
detect trends over time. We focused on the winter to spring seasonal
transition, because this transition is a period of high flow that often
contributes the most to the annual streamflow yield.

The metrics for the snowpack dataset were calculated based on the
triangle method used by Trujillo and Molotch (2014) for SWE data.
The method, which was developed to identify key snow appearance,
disappearance, and peak values for snowpacks in the western United
States, has not been applied to snow depth data in Minnesota before.
However, annual snow depth time series from Grand Rapids demon-
strate a similar triangle structure, so we anticipated that the method
will be effective for our needs. Here, we applied the triangle method
to the Grand Rapids snow depth data to derive snowpack metrics for
both the S2 and S5 catchments. The MEF snowpack data were not used
for these metrics because the biweekly data did not have high enough
temporal resolution. Implementing this method involved identifying
three key dates in the snow season: the date of snow appearance
(DOA), the date of peak snow depth (DOP), and the date of snow
disappearance (DOD). The DOA and DOD values for each water year
were determined to be the first and last non-zero value of snow depth
(with a seven-day buffer to control any erratic early or late season snow
events). To determine the DOP that best approximates the transition
between snow accumulation and ablation, it was necessary to identify
first all potential peaks and then investigate the fit to a triangular
function for snow depth evolution. To do so, the find_peaks function
rom the scipy.signal package in Python 3.8 (Virtanen et al., 2020)
as used to first identify all potential peak values between the timing
f the 10th and 90th percentile of snow accumulation (to ensure the
etected snowpack peak occurred near the middle of the snow season)
hich had snow depths above half the annual mean. Then, each of the
otential peaks was used to simulate snow depth using a triangular
unction, where snow depth increases linearly from DOA to the date
f potential peak, then decreases linearly until it reaches zero at DOD.
ach of these fits (with its corresponding DOP) was then compared to
he measured snow depth data using a nonparametric Mann–Kendall
est for monotonic trends. The DOP whose corresponding fit resulted

n the highest correlation coefficient against measured snow depth was
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Table 1
Magnitude variables used in the regression model.

Variable Description Units

𝑌𝐹 𝑙𝑜𝑤 Total annual streamflow, normalized by area m
𝑋𝑆𝑛𝑜𝑤𝑃𝑒𝑎𝑘 Depth of the snow pack at its peak cm
𝑋𝑀𝐹𝑇 Maximum thickness of frost cm
𝑋𝑊 𝑇𝐸 Annual average water table elevation m
𝐼𝑊 𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 Watershed, 0 for S2, 1 for S5 –
𝑋𝐴𝑣𝑔𝑇 𝑒𝑚𝑝 Average annual temperature ◦C
𝑋𝑇 𝑜𝑡𝑃 𝑟𝑒𝑐𝑖𝑝 Total annual precipitation cm

selected for that year. The snow depth at DOP was also identified, as
well as the duration and rates of the accumulation and melt periods.

For the WTE metrics, we observed that the spring recharge period
begins with a typically annual low value right before the spring climb
to a seasonal high (Fig. 1). For measuring the magnitude of the spring
climb, the overall duration of the recharge period and total WTE
recharge of the season were also identified. The find_peaks function
was again used to select possible dates for the seasonal WTE trough
and peak during the spring recharge period. For each of the several
possible trough/peak pairs identified, the Mann–Kendall test was again
used to compare a linear function of WTE recharge generated against
the measured data. The pair with the highest correlation was selected
for the timing metrics and their WTE values were recorded.

The spring streamflow timing metrics were selected as the maxi-
mum value of the first major peak of the spring season and the timing
of first nonzero value as the onset of spring streamflow. The magnitude
of the first spring streamflow peak was also recorded. Due to the
limited resolution (i.e., biweekly) frost data from the MEF sites, we only
identified the maximum frost depth value and date of maximum.

2.3. Rank and correlational analysis

Each timing metric across the data record was examined for annual
trends using linear regression across each water year (October 1st–
September 30th). This analysis included examining six timing metrics
to quantify spring seasonal hydrology: the peak snow depth (𝑆𝑝𝑒𝑎𝑘), the
date of snow disappearance (𝑆𝐷𝑂𝐷), the date of WTE trough (𝑊𝑡𝑟𝑜𝑢𝑔ℎ),
the date of WTE peak (𝑊𝑝𝑒𝑎𝑘), the date of streamflow onset (𝑄𝑜𝑛𝑠𝑒𝑡),
and the date of the first streamflow peak (𝑄𝑝𝑒𝑎𝑘).

A correlation analysis was used to examine the relationships be-
tween the timings of each of the same six variables of interest. For
each year, the day of the water year in which these events occurred
was recorded in a list and used to rank each of the variables (e.g., if
the maximum WTE occurred first among the six events in water year
2012, then it was given rank 1). The ranks for each event were then
averaged across all years.

2.4. Multivariate regression

We used multiple regression to examine the interactions among
hydrological and climatological variables in controlling streamflow
generation in the spring and throughout the year. A stepwise mul-
tiple regression model was built to predict the magnitude of total
annual streamflow from a set of site-dependent and shared precip-
itation variables. A total of six predictor variables were used: air
temperature (𝑋𝐴𝑣𝑔𝑇 𝑒𝑚𝑝), snowpack depth (𝑋𝑆𝑛𝑜𝑤𝑃𝑒𝑎𝑘), max annual frost
thickness (𝑋𝑀𝐹𝑇 ), average annual WTE (𝑋𝑊 𝑇𝐸), total annual precip-
itation (𝑋𝑇 𝑜𝑡𝑃 𝑟𝑒𝑐𝑖𝑝), and an indicator to designate either the S2 or S5
watershed (𝐼𝑊 𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 ; Table 1). All data used in this model is site-
specific. A random sampling of 60% of the years (1995–2020) were
used for the stepwise analysis. This subset was then used to build
sub-multiple regression models using different combinations of the
predictor variables using a stepwise analysis. Each model tested was a
4

subset of the full model, which contains all the predictor variables and
all potential combinations of interaction terms. Here () is the power
set, or all combinations of the interaction term.

𝑌𝐹 𝑙𝑜𝑤 ∼ 𝛽0 + (𝛽𝑖,𝑗,𝑘,𝑙𝑋𝑖,𝑆𝑛𝑜𝑤𝑃𝑒𝑎𝑘𝑋𝑗,𝑀𝐹𝑇𝑋𝑘,𝑊 𝑇𝐸𝐼𝑙,𝑊 𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 )

+ 𝛽2𝑋𝐴𝑣𝑔𝑇 𝑒𝑚𝑝 + 𝛽3𝑋𝑇 𝑜𝑡𝑃 𝑟𝑒𝑐𝑖𝑝 (1)

A total of 668 sub-models were constructed from the full model
shown in Eq. (1). For each model, a second-order bias-corrected
Akaike’s Information Criterion (AICc) was used to compare predictive
capacity, and the models with lower AICc (𝛥AICc < 2) were taken
as ‘candidate’ models (Burnham et al., 2011). 𝛥AICc is the difference
between the AICc value of the best fit model and the model of interest.
A model with a similar goodness of fit to the best fit model will have
a minimized 𝛥AICc. Each candidate model was then used to predict
the remaining 40% of the data set and validated for linearity, constant
variance, and normality. In addition, each model was given a weight,
𝑊𝑖, which is the probability of the model given the data (Burnham
et al., 2011). 𝑊𝑖 is computed as the likelihood of a given model over
the total number of models and can be read as ‘‘the probability of
model 𝑖 is 𝑤𝑖’’. For each predictor variable, these weights were summed
across the sub-models containing that particular predictor variable to
obtain the overall relative importance of each variable. This process
was then repeated 1000 times with a different random sampling of
years for each candidate model to determine an expected range of
RMSE. This processes was repeated to predict the magnitude of the first
spring streamflow peak, 𝑄𝑃𝑒𝑎𝑘, which is outlined in the supplementary
materials.

To further evaluate the results from the variable importance analy-
sis, a separate dominance analysis was run to determine the indepen-
dent effects of each predictor variable within the best fit model (Bude-
scu, 1993; Murray and Conner, 2009). This method allowed us to
consider the amount of variation in the annual streamflow data that
is explained by each individual predictor variable while removing any
covariance between predictors. It is a metric of the relative explanatory
power of each variable within a single model. This dominance analysis is
different then the step-wise regression model analysis which determines
variable importance between models. The dominance analysis was run
using all of the data, not only the 60% random sampling.

3. Results

Total annual streamflow, normalized by respective catchment areas,
decreased in S2 at a rate of 1.9 cm per water year over 25 years (p <
0.005, 1995–2020) and in S5 at a rate of 2.9 cm per water year also
over 25 years (p < 0.05, Fig. 2a). The decrease in annual streamflow
ccurred despite no statistically significant changes in snowfall fraction
p = 0.69; Fig. 2b), annual precipitation (p = 0.331), snowfall inputs
p = 0.829), or winter air temperature (p = 0.47; Fig. 2c). There was
n increase in mean annual air temperature of 0.4 ◦C per decade (p =
.0005, Sebestyen et al. (2011)), but annual streamflow across multiple
ears shows no statistically significant correlation with mean annual
ir temperature (p = 0.775). Average annual WTE in the S2 peatland
ecreased at a rate of 4 cm/decade (p = 0.002) with the trough WTE
ecreasing at a slightly faster rate of 6.5 cm/decade (p = 0.066).

.1. Streamflow generation

Results from the signal processing of hydrological data showed a
onsistent sequence of events as water traveled from the snowpack
hrough the landscape to generate streamflow. Fig. 3 shows the rela-
ionship between the streamflow and WTE in S2 and S5. First, there is
clear WTE threshold that dictates the initiation of streamflow in both
2 and S5 (Fig. 3a–b), which demonstrates the surface water storage
ust first be ‘‘filled’’ before it ‘‘spills’’ into the stream. There is also
direct and statistically significant relationship between the timing of
eak WTE and the first streamflow peak in both catchments across years
Fig. 3c – d).
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Fig. 2. (A) Summary of decreasing annual streamflow trends in S2 and S5 at the MEF, (B) lack of snow or precipitation trends from the Grand Rapids meteorological station, and
(C) lack of winter air temperature trends from the MEF meteorological station (Dec. 1st–March 31st). 𝛽 values in (A) show the rate of water table change over time in S2 and
S5. P-values show the insignificance of the annual trends in (B) and (C). Stars indicate the level of significance for each trend with ‘***’ denoting p < 0.001 and ‘*’ denoting p <
.05. Shaded areas indicate a 95% confidence interval.
Fig. 3. The non-linear relationship between water table elevation (WTE) and streamflow. (A – B) The thresholds for streamflow initiation in S2 and S5 respectively, shown at the
daily time scale. (C–D) Show the relationship between the timing of peak WTE and the first detected streamflow peak in S2 and S5 respectively. 𝛽 values are the slopes of the
relationships in (C) and (D). The statistical significance of the relationships is shown using ‘*’ to represent p < 0.05. Shaded areas indicate a 95% confidence interval.
Fig. 4 shows the ranked estimates for the timing of each hydrolog-
cal event for 2013 (top panel) and for all years of record (bottom
anel). When averaged across years and catchments, dates of 𝑆𝑝𝑒𝑎𝑘,
𝑡𝑟𝑜𝑢𝑔ℎ, 𝑄𝑜𝑛𝑠𝑒𝑡, 𝑆𝐷𝑂𝐷, 𝑊𝑝𝑒𝑎𝑘, and 𝑄𝑝𝑒𝑎𝑘 occurred sequentially with mean

ates of 135, 156, 166, 170, 187, and 190 respectively. Dates for WTE
rough (𝑊𝑡𝑟𝑜𝑢𝑔ℎ) and peak (𝑊𝑝𝑒𝑎𝑘) were similar in S2 and S5, with S5
howing more variation in trough dates and less variation in peak dates
han S2. Streamflow onset (𝑄𝑜𝑛𝑠𝑒𝑡) in S5 typically occurred later than
n S2 and with much higher temporal variation (mean 164.7 and 168;
D of 14.8 and 21.7 respectively). Date of first streamflow peak (𝑄𝑝𝑒𝑎𝑘)
as similar for both catchments, 190.4 and 190.1 respectively. While

here is a clear sequence of events during spring, the timing for most
f the individual events is not correlated (with the exception of 𝑄𝑝𝑒𝑎𝑘

and 𝑊 as shown in Fig. 3). For instance, the timing of peak snow,
5

𝑡𝑟𝑜𝑢𝑔ℎ
the timing of the WTE trough, and the timing of streamflow onset are
not correlated (Fig. S4).

3.2. Relative impacts of landscape controls on streamflow

The stepwise regression model (Eq. (1)) was used to determine
the relative explanatory power of each hydrological and climatological
input variable on annual streamflow. Select model candidates (smallest
values of 𝛥AICc) for predicting the total annual flow are shown in
Table 2. The base model was ranked last of the 668 models with
the highest 𝛥AICc. Also listed are K, the degrees of freedom in the
selected model, and 𝑤𝑖, or the probability of the model given the data.
Of the metrics shown in Table 2, the value of 𝑤 , or weight, is the
𝑖
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Fig. 4. Hydrologic cascade from snowfall to streamflow. (A) A sample year, 2013, showing each data element overlayed with critical points derived using the parameterization
methods. (B) Annual trends in the derived statistics for magnitude compiled over both catchments. Dark blue dots show the average date of occurrence for each metric over the
time period from 1995–2020. The water year is defined as October 1st through September 31st of the following Gregorian calendar year.
most important as it shows the probability that of all of the models
considered, that model is the best model for making predictions.

Each model in Table 2 shows zero mean and standardized residuals,
but all of the candidate models also show a slight increasing trend in the
variance as a function of the residuals, which may violate the constant
variance assumption. The direction of the increase is not consistent.
Using Cook’s distance (1 > distance > 0.5), discharge in Model 3 for
year 2013 and S2 was identified as an outlier (Cook, 2000). All other
models show no outliers. The remaining validation years were then
used to predict values of total annual flow and compare to the observed
flows from the same year. Sample plots of these values are shown in
Fig. 5.

Frost was an important predictor in the summed weights for each
of the predictor variables (Fig. 5). The individual variables (top four
rows) showed the highest importance, with maximum frost thickness
being the most highly weighted variable with a weight of 0.98 out of a
possible normalized score of 1, meaning that frost had the most additive
predictive power when present in a model. Mean frost thickness in S2
was 5.7 cm with a range of 0 to 36 cm (1995–2020). In S5, mean frost
thickness is 10.5 cm with a range of 0 to 42 cm. The date of maximum
frost at S5 occurred later in the season when compared to S2, and
when ranked with other spring variables, occurred last. Total annual
precipitation was ranked as the second most important predictor vari-
able. However, when the dominance analysis is used on the top model,
𝑌𝐹 𝑙𝑜𝑤,1, only 12.3% of the total variance explained by the model is
explained by the maximum frost thickness. 49.4% of the total variance
is explained by the water table elevation, 26% by precipitation, and
12.3% by the frost thickness and water table interaction term. When
regression was also applied to predict the magnitude at 𝑄𝑝𝑒𝑎𝑘, shown in
Tables S1 and S2 of the supplementary materials, snow depth was the
most highly weighted variable (0.971) followed closely by maximum
frost depth (0.923). Within the top weighted model, however, it was
the snow depth and catchment interaction term that was describing
6

the majority of the variance (42.9%) followed by catchment (34.8%),
maximum frost thickness (17.5%), and then snow depth (4.8%). As
a result, while frost may have a large weight when each model is
considered as a whole during the step-wise regression analysis, frost is
not always the most important variable within each model. (see Fig. 6).

Additionally, of the models tested with only a single predictor,
the model with WTE had the most predictive power with a 𝛥AICc of
14.25 followed successively by the models with the catchment indicator
(𝛥AICc 15.25), average annual temperature (𝛥AICc 25.11), total annual
precipitation (𝛥AICc 26.03), maximum frost thickness (𝛥AICc 29.58),
and finally peak snow depth (𝛥AICc 31.38). Catchment indicator is high
in these rankings because of the high correlation between catchment
and average WTE. This result, and the results from the dominance anal-
ysis, suggest that frost is not the singular best indicator of streamflow,
but is an important predictor in the context of other better streamflow
predictors like precipitation and WTE.

From the candidate models, it is important to note the interchange-
ability of WTE and catchment. Because the average WTE in S2 is lower
than S5 (421 m vs. 423 m), WTE acts as a pseudo indicator variable for
catchment but there is a slight dominance of WTE over catchment. For
example the top two models in Table 2 are the same components other
than the presence of either 𝑋𝑊 𝑇𝐸 variables in 𝑌𝐹 𝑙𝑜𝑤,1 or 𝐼𝑊 𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 in
𝑌𝐹 𝑙𝑜𝑤,2. Additionally, 𝑋𝑊 𝑇𝐸 has a slightly higher weight than 𝐼𝑊 𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑
(Fig. 5).

4. Discussion

We examined the interactions among climatological and hydro-
logical drivers of streamflow in snow-dominated catchments. Using
long-term data from two headwater catchments at the Marcell Experi-
mental Forest in northern Minnesota (S2 and S5), our analysis showed
that the annual streamflow decreased between 1995 and 2017, with
S5 decreasing at a faster rate than S2. In fact, S5 has shown little to no
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Fig. 5. Model results showing: Left, variable importance from the stepwise regression model. Terms of order 3 or higher have been removed because of insignificance (summed
weight = 0) (A–B) show a sample of two observed models from candidate model 𝑌𝐹 𝑙𝑜𝑤,1 and 𝑌𝐹 𝑙𝑜𝑤,2 with the minimum RMSE values from all 1000 iterations. Green line shows
the one to one relationship.
Table 2
Selected models for total annual streamflow in order of AICc.
Model K AICc 𝛥AICc Weight

𝑌𝐹 𝑙𝑜𝑤,1 ∼ 𝛽0 + 𝛽1𝑋𝑀𝐹𝑇 + 𝛽2𝑋𝑊 𝑇𝐸 + 𝛽3𝑋𝑇 𝑜𝑡𝑃 𝑟𝑒𝑐𝑖𝑝 + 𝛽4𝑋𝑀𝐹𝑇𝑋𝑊 𝑇𝐸 6 5.13 0 0.16
𝑌𝐹 𝑙𝑜𝑤,2 ∼ 𝛽0 + 𝛽1𝑋𝑀𝐹𝑇 + 𝛽2𝑋𝑊 𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 + 𝛽3𝑋𝑇 𝑜𝑡𝑃 𝑟𝑒𝑐𝑖𝑝 + 𝛽4𝑋𝑀𝐹𝑇𝑋𝑊 𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 6 5.84 0.71 0.11
𝑌𝐹 𝑙𝑜𝑤,3 ∼ 𝛽0 + 𝛽1𝑋𝑀𝐹𝑇 + 𝛽2𝑋𝑊 𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 + 𝛽3𝑋𝑇 𝑜𝑡𝑃 𝑟𝑒𝑐𝑖𝑝 5 7.07 1.94 0.06
𝑌𝐹 𝑙𝑜𝑤,4 ∼ 𝛽0 + 𝛽1𝑋𝑀𝐹𝑇 + 𝛽2𝑋𝑊 𝑇𝐸 + 𝛽3𝑋𝑇 𝑜𝑡𝑃 𝑟𝑒𝑐𝑖𝑝 5 7.08 1.96 0.06
𝑌𝐹 𝑙𝑜𝑤,5 ∼ 𝛽0 + 𝛽1𝑋𝑀𝐹𝑇 + 𝛽2𝑋𝑊 𝑇𝐸 + 𝛽3𝑋𝑇 𝑜𝑡𝑃 𝑟𝑒𝑐𝑖𝑝 + 𝛽4𝑋𝑀𝐹𝑇𝑋𝑊 𝑇𝐸 + 𝛽5𝑋𝐴𝑣𝑔𝑇 𝑒𝑚𝑝 7 7.95 2.82 0.04

. . .

𝑌𝐹 𝑙𝑜𝑤 ∼ 𝛽0 + 𝛽1𝑋𝑆𝑛𝑜𝑤𝑃𝑒𝑎𝑘𝑋𝑀𝐹𝑇𝑋𝑊 𝑇𝐸𝐼𝑊 𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 + 𝛽2𝑋𝐴𝑣𝑔𝑇 𝑒𝑚𝑝 + 𝛽3𝑋𝑇 𝑜𝑡𝑃 𝑟𝑒𝑐𝑖𝑝 19 111.2 106.06 1.50E−24
streamflow out of the peatland in the last 4 years of the record. These
declining streamflow trends showed a small significant correlation (p
= 0.044) with maximum annual snowpack (Fig. S3) but no signifi-
cant correlation with various other climatic variables such as snowfall
fraction (Fig. 2b) and winter air temperature (Fig. 2c). This lack of
correlation suggests that the observed changes in streamflow must be
considered in conjunction with other land surface drivers. One possible
driver may be an increase in evapotranspiration caused by increases
in surface energy and air temperature (Badger et al., 2021). However,
there is no correlation between air temperature and streamflow (p >
0.5), which means that while increasing evapotranspiration is still a
possible cause, it likely is not the whole explanation (we could not
perform direct analysis with respect to ET since direct measurements
of ET are not available). Instead, we hypothesize that the decrease in
streamflow is a result of the shifts in both hydrological connectivity
within the wetlands and how this connectivity regulates the streamflow
generation processes. By exploring the role of other climatological and
hydrological drivers within the peatland catchments, our results illus-
trate the complex relationships between snow, water table elevations,
and streamflow, as well as the important role of soil frost in controlling
these relations.

4.1. Hydrologic connectivity

Our results show that within peatland catchments, there is a clear
connection between WTE and streamflow, where the shift in peak WTE
towards later in the spring induces a parallel shift in the first streamflow
peak (Fig. 3). This coupling between WTE and streamflow highlights
the importance of hydrological connectivity within this system. Due to
the elevated WTE in the spring compared to the rest of the year (Fig. 1),
this coupling also identifies the spring season as the most important
part of the year for dictating annual streamflow magnitude.

This hydrologic connectivity is also supported by the ranking anal-
ysis from Fig. 4 which gives the sequence of events that lead to
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streamflow generation from the snowpack (Fig. 4). The first event in the
ordering is the timing of the peak snowpack, indicating the beginning
of the snow melt season. The second event is the timing of the lowest
point in the WTE, the trough, which precedes recharge. There is a delay
between these first two events potentially due to peatland storage, the
refreezing of water into the snowpack as it melts (Heldmyer et al.,
2021), ripening of the snowpack, or sublimation of snow back to the
atmosphere. Once the water has begun reaching the peatland water
table, the ranking scheme indicates that the water table then acts as a
secondary storage system until streamflow initiates. Streamflow onset
is then initiated only after the WTE rises above a threshold relative to
the outlet stream elevation (Fig. 3a–b).

The date of frost disappearance was excluded from this ranking
because of the low data resolution for frost depth, so the timing of
soil frost in relation to water table recharge and streamflow onset
is unknown. Past studies that have found no dependence between
frost and streamflow timing have shown this is likely due to the frost
thawing before recharge begins (Lindström et al., 2002), while other
sites that have shown dependence between streamflow and soil frost
have identified rapid streamflow response when precipitation is falling
on frozen snow-free ground (Shanley and Chalmers, 1999). For our
results to be put into context of these previous studies, higher frequency
soil frost monitoring is needed.

4.2. Explanatory power of soil frost

Although the role of soil frost disappearance timing remains uncer-
tain, the stepwise multiple regression model built to predict streamflow
from both climatological and hydrological variables demonstrated a
strong dependence on soil frost thickness. The five best performing
models for streamflow each contains a combination of frost thickness,
water table elevation, catchment, air temperature, and total annual
precipitation. Peak snowpack depth at the MEF is not selected as an im-
portant predictive variable in these top models, which was unexpected,



Journal of Hydrology 617 (2023) 128801M.W. Jones et al.
Fig. 6. (A) Snow-Stream Onset Delay (Date of Stream Onset–Date of Peak Snow at MEF) as controlled by frost thickness. (B) Peak WTE, normalized by average WTE in each
catchment, as a function of frost thickness. Beta values show the slopes for each relationship. Stars indicate the level of significance for each trend with ‘***’ denoting p < 0.001.
Shaded areas indicate a 95% confidence interval.
given that past studies commonly use SWE to predict streamflow (Ba-
yard et al., 2005; Ryberg et al., 2016). However, in our case, snow
depth may not capture the same temporal variability in snow density as
SWE, limiting the ability to predict spring streamflow from snow depth.

Maximum frost thickness is the most highly weighted predictor
variable when compared to all other possible predictors (with weight
defined in Section 2.4). This result runs counter to the expectation
that precipitation or snowpack, the more commonly used predictors for
streamflow, would have the most weight. Total annual precipitation
was the second highest weighted predictor followed by both WTE
and catchment. However, it is important to note two things. First,
when each of the predictor variables are used to predict streamflow on
their own, maximum frost thickness has the second lowest explanatory
power. Second, within the best model for streamflow, frost was only
describing 12% of the total model variance. Similar to snowpack, soil
frost is not present every year, and therefore should not be directly re-
lied upon to solely predict streamflow. Instead, in areas where frost may
appear, it should be considered as an important driver of streamflow
generation and a supporting predictor for streamflow amount.

This result is not unexpected, given the wealth of data showing the
influence of soil frost on infiltration in both modeled soil columns (Zhao
and Gray, 1999) and catchments on short time scales (< 3 years, Shan-
ley and Chalmers (1999)). Nevertheless, it reinforces the idea that
frost is an important hydrologic factor even across long time scales.
Additionally, while many of these analyses have looked at the effects
of soil frost on infiltration or streamflow (Ala-Aho et al., 2021; Bayard
et al., 2005; Lindström et al., 2002), our results show how these effects
extend to streamflow, lateral dynamics, and connective fluxes across
the catchment. Specifically, in areas where the season of frozen ground
overlaps with the spring recharge season, as does in much of northern
North America, soil frost is sometimes a dominant factor affecting
both the timing and magnitude of recharge and streamflow in forested
catchments. While it is unclear why soil frost seems to be particularly
influential in our studied catchments compared to forested catchments
(Aho et al. 2021), one reason may be that the perched water table
may make peatlands more susceptible to higher frost contents in the
upper ground layers. Higher frost content in the upper layers would
cause more drastic restrictions in infiltration and a larger fraction of
snowmelt being routed to streamflow.

4.3. Applications to water balance partitioning

The presence of increased soil frost depth is generally known to
either limit the infiltration of water to the water table, making the
recharge and baseflow processes slower and delaying streamflow ini-
tiation, or limit recharge altogether and cause rapid streamflow gen-
eration through overland flow (Ala-Aho et al., 2021; Fuss et al., 2016;
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Shanley and Chalmers, 1999). These processes dictate the division of
water between that which is available to plants for transpiration, and
that which flows to streams. While the effects of different plant cover
types, soil types, and snow cover distributions on water partitioning
have been studied (Hammond et al., 2019), the coupled effects of soil
frost on partitioning are still understudied. In this section we present
several hypotheses and preliminary results to illustrate how frost could
control snowmelt partitioning.

In the MEF catchments, the decoupled timing between snowpack
melt and streamflow initiation implies that there may be an influence
of frost on this partitioning in both S2 and S5. Fig. 7 shows a depiction
of how different snowfall and winter temperature scenarios may dictate
(i) the depth of the frost layer and (ii) the partitioning of SWE for
spring streamflow and evapotranspiration. In each proposed scenario,
data from the S2 and S5 catchments (1995–2020) have been divided
into each of four winter temperature and snowfall scenarios. Years with
winter temperatures above the average are considered ‘warmer winter’
and years with snowfall totals above the average are considered ‘more
snowfall’ (and vice versa). Scenario A shows the baseline conditions at
the MEF where there is more snowfall and colder winter temperatures
compared to future projected conditions. In this scenario, a large snow-
pack and colder temperatures result in a lower maximum frost thickness
compared to a deeper frost depth in scenario B (see light blue boxplots
in upper row), where there is little snow and less insulation, or the thin
frost layer in C where there are warmer temperatures. Because of the
deeper snowpacks, scenarios A and C will have more water available
than in scenarios B and D respectively (Fig. 7, dark blue areas in the
arrows).

Snow–water equivalent represents the amount of water that is avail-
able to recharge soil storage or runoff to spring streamflow, thus less
SWE can result in a reduction in overall streamflow water availability
(Barnett et al. (2005) ; Fig. 7A to B, or C to D, purple arrows and box-
plots). Additionally, the depth of soil frost may control the partitioning
of SWE over two steps: first, by controlling the amount of soil water
availability in early spring, and then, the amount of soil water taken up
by evapotranspiration in the late spring. In the first stage, the presence
of frost limits early snowmelt infiltration and enhances surface runoff
to streamflow, but we hypothesize that a reduction in vertical drainage
may also increase saturation in the top part of the peat soil column. In
the second stage, transpiration is assumed to start only after the ground
has thawed and after leaf out (Mellander et al., 2006). Here, because
the melting of the frost layer depends on the insulation effects of snow,
snow also plays a role in determining the timing of transpiration onset.
Therefore, the magnitude of spring evapotranspiration will depend both
on the timing of soil frost disappearance and the amount of soil frost.
For example, in scenario A, there is a large amount of water available
in the snowpack, and because of the deep frost layer coupled with
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Fig. 7. Conceptual diagram representing the effects that frost could have on the partitioning of precipitation into evapotranspiration and annual streamflow during and after
snowmelt. Light blue shading represents frost depth. Relative magnitude of SWE due to snowfall is shown in dark blue. SWE splits into diverging arrows to show the relative
partition between evapotranspiration (dark green) and streamflow (purple) respectively. The center column shows frost depth data (light blue) and total annual streamflow data
(purple) from the MEF partitioned into each of the four scenarios. Deep vertical drainage, though known to occur in S2 and S5 (Verry et al., 2011), is not depicted for simplicity.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the deep snowpack, more of the water is lost to overland flow due to
inhibited infiltration and delayed transpiration onset (therefore Q in A
> Q in C and ET in A < ET in C despite the same snowfall inputs).
However, comparing scenario B to A, there is a thicker frost layer, as
confirmed by the MEF data, but a larger fraction of the available water
is directed towards evapotranspiration because the frost layer melts
out more quickly due to the small snowpack, leaving more time for
transpiration in the spring. This is reflected in the data from S2 and
S5 which respectively show a lower amount of annual streamflow in
scenario B compared to scenario A. There is also a lot more variation
in the data during the years with less snowfall, likely due a patchy snow
cover.

This redistribution of soil water storage towards earlier spring evap-
otranspiration with deep frost and little snowfall could lead to overall
increases in the evaporative fraction of meltwater inputs. We can see
that if winter temperatures increase and snowfall rates stay constant
(A ⟶ C), there may actually be overall increase in evapotranspiration
at the expense of streamflow. If winter temperatures remain constant
but snowfall decreases (A ⟶ B) the rates of evapotranspiration may
remain relatively constant despite the decrease in water availability,
because of the shift in partitioning due to frost. If there are simul-
taneous increases in temperature and decreases in snowfall (A ⟶

D) the partition remains relatively the same. Accordingly, we could
observe decreases in both evapotranspiration rates and overland runoff.
Therefore, it is important to consider the interactions of snow, frost,
and water table dynamics, when determining SWE partitioning in
headwater catchments like the MEF.
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5. Conclusions

Our results demonstrated the hydrologic connectivity between the
snowpack, water table, frost, and streamflow during the winter–spring
transition, and highlights the importance of frost in streamflow gener-
ation in peatlands. This research shows that in the context of catch-
ment management, it is important to monitor the snow pack and
the frost layer. Together, the interactions between snow and frost
give a more holistic understanding of streamflow generation. These
interactions need to be properly accounted for in hydrological and land
surface models, so that we can improve our abilities to predict long-
term catchment response to environmental change and improve water
management.

6. Open research

All data used in this paper is accessible online at the following
locations:

• MEF precipitation: Sebestyen, S.D., D.T. Roman, J.M. Burdick,
N.K. Lany, R.L. Kyllander, A.E. Elling, E.S. Verry, and R.K. Kolka.
2021. Marcell Experimental Forest daily precipitation, 1961 —
ongoing ver 2. Environmental Data Initiative. https://doi.org/10.
6073/pasta/61c7154b78f521841ff8e25fc6db9987

• MEF soil frost: Sebestyen, S.D., E.S. Verry, A.E. Elling, R.L.
Kyllander, D.T. Roman, J.M. Burdick, N.K. Lany, and R.K. Kolka.
2020. Marcell Experimental Forest biweekly bog frost depth, 1985

https://doi.org/10.6073/pasta/61c7154b78f521841ff8e25fc6db9987
https://doi.org/10.6073/pasta/61c7154b78f521841ff8e25fc6db9987
https://doi.org/10.6073/pasta/61c7154b78f521841ff8e25fc6db9987


Journal of Hydrology 617 (2023) 128801M.W. Jones et al.

C

t
a
i
C
C

D

t
S
F
e

D

m

A

v
l
f
U

A

a

a

— ongoing ver 1. Environmental Data Initiative. https://doi.org/
10.6073/pasta/0f184840135054ab017c8aad6496c353

• MEF snow and SWE: Sebestyen, S.D., J.M. Burdick, D.T. Ro-
man, N.K. Lany, R.L. Kyllander, A.E. Elling, E.S. Verry, and R.K.
Kolka. 2021. Marcell Experimental Forest biweekly snow depth,
frost depth, and snow–water equivalent, 1962 — ongoing ver
2. Environmental Data Initiative. https://doi.org/10.6073/pasta/
2ff0a9c2cce5a130b7b51fefe7ff38c6

• MN DNR snow and SWE: Courtesy of the Minnesota Depart-
ment of Natural Resources Grand Rapids Forestry Lab - Sta-
tion 213303. Data available here: https://www.dnr.state.mn.us/
climate/historical/daily-data.html

• MEF streamflow: Verry, Elon S.; Elling, Arthur E.; Sebestyen,
Stephen D.; Kolka, Randall K.; Kyllander, Richard. 2018. Marcell
Experimental Forest daily streamflow data. Fort Collins, CO: For-
est Service Research Data Archive. https://doi.org/10.2737/RDS-
2018-0009

• MEF WTE: Sebestyen, S.D., J.M. Burdick, D.T. Roman, N.K. Lany,
R.L. Kyllander, A.E. Elling, E.S. Verry, and R.K. Kolka. 2021.
Marcell Experimental Forest daily peatland water table elevation,
1961 — ongoing ver 2. Environmental Data Initiative. https://
doi.org/10.6073/pasta/2a75c323256252a763e9343f0df7b6af
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